Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli.

نویسندگان

  • Mattijs K Julsing
  • Manfred Schrewe
  • Sjef Cornelissen
  • Inna Hermann
  • Andreas Schmid
  • Bruno Bühler
چکیده

The outer membrane of microbial cells forms an effective barrier for hydrophobic compounds, potentially causing an uptake limitation for hydrophobic substrates. Low bioconversion activities (1.9 U g(cdw)(-1)) have been observed for the ω-oxyfunctionalization of dodecanoic acid methyl ester by recombinant Escherichia coli containing the alkane monooxygenase AlkBGT of Pseudomonas putida GPo1. Using fatty acid methyl ester oxygenation as the model reaction, this study investigated strategies to improve bacterial uptake of hydrophobic substrates. Admixture of surfactants and cosolvents to improve substrate solubilization did not result in increased oxygenation rates. Addition of EDTA increased the initial dodecanoic acid methyl ester oxygenation activity 2.8-fold. The use of recombinant Pseudomonas fluorescens CHA0 instead of E. coli resulted in a similar activity increase. However, substrate mass transfer into cells was still found to be limiting. Remarkably, the coexpression of the alkL gene of P. putida GPo1 encoding an outer membrane protein with so-far-unknown function increased the dodecanoic acid methyl ester oxygenation activity of recombinant E. coli 28-fold. In a two-liquid-phase bioreactor setup, a 62-fold increase to a maximal activity of 87 U g(cdw)(-1) was achieved, enabling the accumulation of high titers of terminally oxyfunctionalized products. Coexpression of alkL also increased oxygenation activities toward the natural AlkBGT substrates octane and nonane, showing for the first time clear evidence for a prominent role of AlkL in alkane degradation. This study demonstrates that AlkL is an efficient tool to boost productivities of whole-cell biotransformations involving hydrophobic aliphatic substrates and thus has potential for broad applicability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permeabilized microbes in biotechnology

AlkL is an outer membrane porin from Pseudomonas. Its expression in E. coli was shown to greatly stimulate the oxidation of hydrophobic substrates by a a recombinant oxygenase enzyme system. Bacterial membranes can be perturbed for biotechnological purposes by enzymatic treatment. Some of the enzymes and their actions are discussed on this commercial site. Different chemical treatments that are...

متن کامل

Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles

Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...

متن کامل

SDS-PAGE Analysis of the Outer Membrane Proteins of Uropathogenic Escherichia coli Isolated from Patients in Different Wards of Nemazee Hospital, Shiraz, Iran

Background: Outer membrane proteins (OMPs) constitute the main structure and about half of the cell wall of Gram-negative bacteria. The OMPs of Escherichia coli (E. coli) play an important role in its drug resistance. Previous studies have shown that the OMPs of E. coli enhance its pathogenic effects by helping the bacterium to evade the immune defense and promote its adsorption to host cells. ...

متن کامل

Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct

A bacterial P450 monooxygenase-based whole cell biocatalyst using Escherichia coli has been applied in the production of ω-hydroxy dodecanoic acid from dodecanoic acid (C12-FA) or the corresponding methyl ester. We have constructed and purified a chimeric protein where the fusion of the monooxygenase CYP153A from Marinobacter aquaeloei to the reductase domain of P450 BM3 from Bacillus megateriu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 16  شماره 

صفحات  -

تاریخ انتشار 2012